PAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways
نویسندگان
چکیده
Several studies have indicated that PAPSS2 (3'-phosphoadenosine-5'-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing the expression pattern of the PAPSS2 gene, we have found that PAPSS2 is expressed in bone tissue and bone formation. PAPSS2 transcripts increase during osteoblast differentiation and are in less level in RANKL-induced osteoclast like cells. By using lentivirus-mediated RNA interference (RNAi) technology, we knocked down PAPSS2 expression in MC3T3-E1 osteoblast. Silencing of PAPSS2 expression significantly decreases ALP activity and cell mineralization, inhibits expression of osteoblast marker osteopontin (OPN) and collagen I. Conversely, overexpression of PAPSS2 promotes the MC3T3-E1 to differentiate into osteoblast and mineralization. Moreover, compared to that in the control cells, the mRNA level and protein expression of phosphorylated Smad 2/3, which is a key transcriptional factor in the Smad osteoblast differentiation pathway, showed significant decreases in PAPSS2-silenced cells and increases in PAPSS2-overexpression cells. These results suggest that PAPSS2 might regulate osteoblast ALP activity and cell mineralization, probably through Smads signal pathways.
منابع مشابه
Dihydrotestosterone, a robust promoter of osteoblastic proliferation and differentiation: understanding of time-mannered and dose-dependent control of bone forming cells
Objective(s): The present study was aimed to evaluate the time-mannered and dose-dependent effects of 5α-dihydrotestosterone (5α-DHT) on the proliferation and differentiation of bone forming cells using MC3T3-E1 cells. Materials and Methods: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro exper...
متن کاملGinsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model.
Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect of the suppression of osteoclast differentiation in mouse bone-marrow derived ...
متن کاملHypoxia-Induced MicroRNA-429 Promotes Differentiation of MC3T3-E1 Osteoblastic Cells by Mediating ZFPM2 Expression.
BACKGROUND/AIMS Hypoxia has been reported to regulate osteoblastic differentiation of bone cells and cartilage development. However, information concerning the molecular mechanisms remains largely unknown. METHODS The expression of miR-429 was evaluated by quantitative real-time PCR analysis. To test whether miR-429 directly regulate the expression level of ZFPM2 at transcription level, dual-...
متن کاملEffect of CXCR4 inhibitor AMD3100 on alkaline phosphatase activity and mineralization in osteoblastic MC3T3-E1 cells.
The aim of the study was to investigate the effect of C-X-C chemokine receptor type 4 (CXCR4) inhibitor AMD3100 on the osteogenic differentiation of pre-osteoblastic cell line MC3T3-E1. In this study we found that blocking SDF-1/CXCR4 signaling with AMD3100 strongly suppressed osteogenic differentiation in MC3T3-E1 cells, as evidenced by an early decrease in the activity of alkaline phosphatase...
متن کاملCollagen XXIV (Col24α1) Promotes Osteoblastic Differentiation and Mineralization through TGF-β/Smads Signaling Pathway
Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012